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Abstract.  In recent years a number of methods have been developed for subdividing the surface of the earth to meet the needs of 
applications in dynamic modeling, survey sampling, and information storage and display.  One set of methods uses the surfaces 
of Platonic solids, or regular polyhedra, as approximations to the surface of the earth.  Diamond partitions are similar to recursive 
subdivisions of the triangular faces of either the octahedron or icosahedron.  This method views the surface as either four 
(octahedron) or ten (icosahedron) tessellated diamonds, where each diamond is composed of two adjacent triangular faces of the 
figure.  The method allows for a recursive partition on each diamond, creating nested sub-diamonds, that is implementable as a 
quadtree, including the provision for a Peano or Morton type coding system for addressing the hierarchical pattern of diamonds 
and their neighborhoods, and for linearizing storage.  Furthermore, diamond partitions, in an aperture-4 hierarchy, provide direct 
access through the addressing system to the aperture-4 hierarchy of hexagons developed on the figure.  Diamond partitions 
provide a nested hierarchy of grid cells for applications that require nesting and diamond cells have radial symmetry for those 
that require this property.  Finally, diamond partitions can be cross-referenced with hierarchical triangle partitions used in other 
methods. 
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1. Introduction 
 

Many methods have been designed for creating networks, or global grids, of approximately equally-
spaced points or approximately equally-sized areal units on the surface of the earth to respond to needs of 
many applications in dynamic modeling of earth processes and in collection of observational data through 
census or surveys. A series of papers has looked at some of the properties of these grids (White et al. 
1992, White et al. 1998, Kimerling et al. in press).  In this paper a grid system is proposed that is based 
on a recursive subdivision of the faces of two of the regular polyhedra, the octahedron and the 
icosahedron (Figure 1).  
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Figure 1.  Octahedron (a), and Icosahedron (b). 

 
 The purpose of this paper is to present a method using diamonds as the basic tessellation units and 
demonstrate its properties for global grids applied to survey sampling, dynamic modeling, and storage 
and retrieval of global data. 
 

2. Description of Method 
 
This method conceives of the surfaces of the octahedron and icosahedron as composed of pairs of 
adjacent triangles, or diamonds, that tessellate, or cover the surface.  On the polyhedra, the diamonds are 
bent, so to speak, across the narrow diagonal, but for data structure purposes they can be considered 
entire.  The octahedron has four diamonds and the icosahedron ten (Figure 2).  
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Figure 2.  Unfolded diamonds for the octahedron (a), and icosahedron (b). 
 
 There is a natural hierarchy of nested diamonds that allows a scale of grid appropriate for an 
application.  The hierarchy is completely analogous to that on a square tessellation and can be composed 
of four subdivisions at each lower level, of nine subdivisions, or of other factors.  For one of the global 
diamonds, the top down subdividing process resembles that of quadtrees (Figure 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.  Hierarchical subdivision of diamonds by factors of four showing successive levels for one sub-diamond at each level 
in darker shades of gray, displayed in landscape aspect. 

 
 A diamond tessellation (or tiling) in the plane is an isohedral tiling, meaning a pattern with basic units 
that are equivalent under all of the symmetries of the tessellation, like the tessellations of squares, 
hexagons, or equilateral triangles (Grünbaum and Shephard 1977).  Some properties of tessellations, 
listed in Bell et al. (1983), are degree of adjacency, aperture (or expansion factor between levels), 
circularity (the difference between smallest circumscribed and largest inscribed circles), convexity (the 
difference between a cell and its convex hull), orientation (the number of orientations of cells - e.g., two 
for triangle tessellations), limit (whether subdivisions can occur indefinitely), similarity (whether cells at 
all levels are the same shape), and regularity (whether cells are regular polygons).  By these criteria 
diamond tessellations are similar to squares except that they are less circular and not regular. 
 An important aspect of a tessellation for many applications is ease of addressing, or numbering, the 
cells in a level and across levels.  Finding neighbor cells in the same level or aggregating data from one 
level to another are two examples of processes that need a mechanism for referencing other cells.  
Because the diamond tessellation can be viewed, for purposes of addressing, as a skewed transformation 
of a square tessellation, much of the work in developing addressing systems for square tessellations is 
available.  In particular, quadrant-recursive orderings (Mark 1990) are possible, and desirable because 
they simultaneously order cells in two dimensions.  An example of a quadrant-recursive ordering is the 
Morton or Peano order (Mark 1990, Saalfeld 1998) (Figure 4a). 
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Figure 4.  (a) Morton or Peano type addressing system for diamonds at the third level; (b) the linear trace of the addresses 
showing the recursive pattern of space filling. 

 
 The Morton order traces a zigzag course through the diamonds at any given level (Figure 4b).  The 
binary representation of the sequence of addresses interleaves or alternates the bits for the coordinates in 
two dimensions placed along two adjacent sides (at an angle of 120 degrees).  For the four addresses in 
one level, for example, the binary representations are 00, 01, 10, 11, where the second address moves one 
unit along one dimension (down and right), the third moves one unit along the other dimension (up and 
right), and the fourth moves one unit in both dimensions.  If the complete set of addresses is placed in a 
line, the sequence represents a regular order of passing through the entire space, but more evenly moving 
through the two dimensions than would be the case with the equivalent of a row-major or column-major 
sequence. 
 Diamond tessellations are compatible with tessellations of triangles or hexagons.  The triangular 
decompositions used in Fekete (1990), Dutton (1998), or Lee and Samet (1998) for example, each use 
different addressing systems and different projections from sphere to icosahedron or octahedron.  But 
since diamonds are pairs of adjacent triangles, the diamond structure can be cross-referenced to any of 
these triangle systems by adopting the same projection.  The cross-referencing of addresses would be 
more complicated. 
 There is a hexagon tessellation that corresponds to the diamond tessellation at every level of 
resolution (Figure 5).  Hexagons, with their properties of uniform adjacency and maximal cell 
compactness, are desirable for applications in dynamic modeling, for example, in Murray (1967), 
Baumgardner and Frederickson (1985), and Thuburn (1997).  The hexagon tessellation is a dual 
tessellation to that of the diamonds, meaning that the vertices and edge midpoints of the diamonds are the 
centers of the hexagons, and the vertices of the hexagons are the centers of the equilateral triangles that 
form the diamonds (Figure 5). 
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Figure 5.  Hexagon tessellations corresponding to diamond tessellations at three levels. 
 
 Because of the correspondence between diamonds and hexagons, the same addressing system can be 
used for hexagons as for diamonds.  For either the octahedron or icosahedron, there are special cases at 
the vertices.  For the octahedron there are squares at each of the six vertices; for the icosahedron there are 
twelve pentagons.  These squares or pentagons become increasingly small as the resolution of the grid 
increases.  As an example, at the first level of subdivision for the octahedron there are twelve hexagons 
and six squares (Figure 6).  An addressing assignment to correspond with the first level diamond 
subdivision assigns the left-most cell, a square, with zero and then proceeds to the hexagon down and 
right, then up, and finally down and right again in sequence as with the diamonds.  If the four initial 
diamonds of the octahedron are numbered zero through three from left to right, and this number is 
prepended to the within-diamond addresses, the two-digit arrangement appears as in Figure 6.  Only four 
hexagons, those ending in digit three, are wholly contained in a diamond; all others are shared between 
two diamonds.  Two of the vertex squares are additional special cases and are labeled in Figure 6 as "P1" 
and "P2" suggesting that they play the role of "poles" in the addressing system. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.  Addressing system for hexagons at the first level of subdivision of the octahedron. 

 
  The hexagon tessellations in Figure 5 do not nest between levels, that is, the hexagons from one level 
are not wholly contained in hexagons at the next higher level.  Only the aperture-7 hierarchy of hexagons 
has the nestedness property.  However at every level except the lowest (defining a "limited" tiling in the 
terminology of Bell et al. 1983), the cells of the aperture-7 hexagon hierarchy are not strict hexagons, but 
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have an approximately hexagonal shape with a crenulated border.  A fractal process can be used to 
generate hexagon hierarchies of aperture-7, aperture-4, and others (Arlinghaus 1993).  Although the 
aperture-7 hierarchy would be of interest because of nesting, it is conjectured that it is not possible to 
tessellate the aperture-7 hierarchy of hexagons over the faces of the octahedron or icosahedron (or 
tetrahedron) such that the only singularities occur at the vertices.  Nevertheless, the hierarchy of interest 
for relating to the aperture-4 diamond hierarchy is that of aperture-4.  In this hierarchy a hexagon at a 
higher level is composed of one whole and six half hexagons from the next lower level (Figure 7a). 
 

(b) (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.  (a) The aperture-4 hexagon hierarchy corresponding to the diamond hierarchy, highlighting one hexagon composed of 
one whole and six half-hexagons. (b) The greatest common unit of intersection of hexagons, triangles, and diamonds at a given 

level of hierarchy is the "kite". 
 

 In addition to the hexagon hierarchy corresponding to diamonds, there is the triangle hierarchy used 
in several other grid systems cited above.  In order to move data from one of these systems, triangles, 
hexagons, or diamonds, to another, one possible geometry would be that of the largest unit that is 
contained in all three (mislabeled "least common geographical unit" at one time, see Langran and 
Chrisman 1988).  This unit has been called the "kite" (T. Olsen personal communication) (Figure 7b).  
Since kites do not nest, they would be best used for transfers of data within rather than across levels. 
 

3. Applications 
 
One major motivation for developments in global grids has been sampling and monitoring of natural 
resources over the globe (White et al. 1992, Olsen et al. 1998).  Stevens (1997) described several 
properties of grid-based sampling designs that diamonds satisfy.  Stevens showed that if the basic 
tessellation unit has radial symmetry about a center point and translation congruence then sampling 
designs can meet the criteria of the Horvitz-Thompson theorem for continuous populations, thus allowing 
valid design-based inference.  Radial symmetry means that any point in the tessellation cell has a 
corresponding point at the same distance from the center in the opposite direction.  Triangles, for 
example, do not meet this condition.  Translation congruence means that the tessellation cells all have the 
same size, shape, and orientation. 
 Stevens also described what he called a multi-density, nested-randomized-tessellation-stratified 
sampling design for use in certain complex monitoring situations.  An important aspect of this design is a 
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hierarchical randomization process whereby randomization occurs at each level of a recursively 
hierarchical grid system.  Stevens illustrated this process using the generalized balanced ternary 
addressing system for hexagons developed by Gibson and Lucas (1982).  The quadrant-recursive 
addressing system for diamonds allows this type of design as well (Figure 8a).  Another aspect of Stevens' 
design is local randomization within each tessellation cell (Figure 8b). 
 

(b)(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  (a) A path through the diamonds at level three after their original order (see Figure 4b) has been hierarchically 
randomized, that is, the addresses for each diamond in each group of four at each level have been permuted randomly; "S" 

indicates the start of the path and "E" indicates the end.  (b) Tessellation-stratified randomization, that is, local randomization of 
sampling points within each third level diamond. 

 
 Two examples illustrate the use of diamonds in surveying and analyzing natural resources.  The first 
application is a proposed sample design for forests of North America for which the desired sample size 
was about 220 points across the continent (Figure 9a).  The second example is a grid of 10,000 km2 

hexagons (illustrated at 100,000 km2) for assessing species diversity of birds and mammals across Canada 
and North America (Figure 9b). 
 

(b)(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  (a) Proposed sample design of about 220 points for a North American forest assessment. (b) Hexagon grid (here 
100,000 km2 cells) for assessing bird and mammal diversity in Canada and North America.  Background for both maps are the 

level two ecoregions published by the Commission for Environmental Cooperation (a NAFTA organization) (1997). 

6 



 
 Global grids based on the hexagonal tessellations that are dual to triangular decompositions of a 
spherical icosahedron have been used in modeling fluid dynamics of the atmosphere (Thuburn 1997).  
Heikes and Randall (1995) noted that simulations using icosahedron-based hexagon grids in polar 
orientation evolved dynamics that were asymmetric across the equator, possibly because the grids are not 
so symmetric.  Better performance was obtained from a symmetric grid.  To meet the symmetry criterion, 
Sahr and others (Sahr and White 1998, Kimerling et al. in press) have proposed the ISEA (Icosahedral 
Snyder Equal Area) grid whose orientation achieves equatorial symmetry by placing the midpoints of two 
edges at the North and South Poles.  The ISEA grid can be subdivided with diamonds since it is derived 
from the icosahedron. 
 Diamond subdivisions of the icosahedron or octahedron are not dependent on the method of mapping 
from the surface of the polyhedral solid to the sphere or spheroid.  Therefore this method may be used 
with an equal area grid or one optimized for performance based on other criteria (White et al. 1998).  
Furthermore, because they are nested, diamond subdivisions provide for a Kalman-filter type of 
prediction model for data aggregation and disaggregation between levels, as proposed by Huang and 
Cressie (1997). 
 Since diamond tessellations can be regarded as skewed square tessellations, many methods developed 
for quadtrees may be applied (see Samet 1984 for a review, and Lee and Samet 1998 for an application of 
quadtrees to triangle decompositions of an icosahedron).  However, any method that depends on the 
metric distances between neighbors may not work, of course.  Further work on diamond subdivisions 
should develop methods for neighbor searching, distance finding, and range searches in order to provide 
storage, retrieval, and geometric operations for data stored in a system based on diamonds. 
 

4. Conclusions 
 
The octahedron and icosahedron have been used in a number of global grid applications because they 
provide convenient models for the translation to the sphere of grids developed in the planes of their faces.  
The octahedron has the advantage that the faces can be oriented on the sphere to correspond with the 
octants of the spherical coordinates of latitude and longitude, and thus provides a familiar orientation.  For 
example, one face can be placed with vertices at (1) the North Pole, (2) 0° longitude, 0° latitude, and (3) 
90° E longitude, 0° latitude.  The icosahedron has the advantage that it has the smallest size faces of the 
regular polyhedra and that, therefore, the shape and area distortions induced by mapping the faces to the 
sphere will, in general, be minimized (White et al. 1998). 
 Conceiving the faces of these geometric models as joined in pairs to form diamonds results in a 
recursively defined hierarchical grid system that has several advantages.  First, diamond geometry is 
simpler than either hexagons or triangles, the two cell shapes that have been used in most grids based on 
the octahedron or icosahedron.  The diamond hierarchy is nested, unlike the aperture-3 or aperture-4 
hexagon hierarchies, and tessellates the spherical model, unlike the aperture-7 hexagon hierarchy.  The 
diamond hierarchy has cells with radial symmetry and translation congruence, unlike triangles.  Finally, 
data associated with diamonds may, in any case, be transferred to the hexagon or triangle tessellations 
corresponding to diamonds by using statistical prediction models operating on the mutual units of 
intersection, the kites.  Thus the diamond system should perhaps be best seen as a multi-tessellation 
system where any of the three cell shapes can be used as appropriate and data can then be transferred to 
the other tessellations for other applications. 
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