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Comparing Geometrical Properties of Global Grids

A.Jon Kimerling, Kevin Sahr, Denis White, and Lian Song

ABSTRACT: Transforming raw observations into geometrically regular global grids is a funda-
mental data processing and storage problem underlying much of our global data analysis. The
basic geometry of traditionally employed quadrilateral-based point or area grids, while well suited
to array storage and matrix manipulation, may inheremly hinder numerical and geostatistical
modeling efforts. Several sciemists have noted the superior performance of triangular point grids
and associated triangular cells that can be aggregated imo hexagonal surface tessellations, yet, no
thorough evaluation of discrete global grid alternatives has been conducted. We present results
from a global grid comparison study that focused on recursive tiling of polyhedral faces projected
omo the globe. A set of evaluation criteria for global partitioning methods were developed. Of
these, metrics for spheroidal surface area, compactness, and cemerpoim spacing were found to be
of particular importance. We present examples of these metrics applied to compare different re-
cursive map projection-based and quadrilateral spherical partitionings. One map projection ap-
proach, the Icosahedral Snyder Equal Area (ISEA), shows particular promise due to its production
of equal area triangular and hexagonal cells on the spheroid at all levels of recursive partitioning.

KEYWORDS: Global grids, spherical surface tessellations, global data models, distortion analysis

Introduction

A new era of high spatial and temporal resolu-
tion environmental data covering the entire
globe is about to begin, ushered in by NA-

SA's Earth Observation System (EOS) and other
global data collection efforts. Examples are the 1 kIn
AVHRR, land cover (Loveland et al. 1991), and
digital elevation model (DEM)data sets compiled as
part of the International Geosphere-Biosphere Pro-
gram's Data and Information System (Eidenshink
and Faundeen 1994; Hastings 1996). We should
expect that earth scientistswillaccelerate their use of
geographic information systems (GIS), numerical
modeling approaches, and geostatistical methods,
singly or in concert, to study global scale phenom-
ena. Phenomena of varying time scales, such as cli-
mate change, deforestation, biodiversity loss,
biogeochemical cycles,and transports/budgets in the
atmosphere and oceans, are beginning to be studied
as an interconnected global system. Such global
analyses will require both spatial and temporal
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sciences, Oregon State University, Corvallis, OR 97331.
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<kimerlia@geo.orst.edu>.

integration of currently disparate data sets from a
wide variety of data producers (Kahn 1995). Trans-
forming the raw observations underlying global
analyses into a global grid is a fundamental data
processing and storage problem.

A global grid is a tessellation of the Earth into a
geometrically regular set of cells, with associated cell
centerpoints. A higWy regular global grid would
allowus to:
• Summarize and organize the multiple, non-

uniformly spaced measurements over the
globe;

• Calculate gradients faithfully (e.g., for budget
calculations);

• Make comparisons of time-series of globally
distributed data (e.g., for detecting climate
changes);

• Make statistically meaningful regional com-
parisons of globally distributed data;

• Compare and combine data sets taken at
different spatial resolutions, such as data from
multiple satellite measurements and field
verification data;

• Improve the operation of numerical models
based on finite difference equations; and

• Document the precision as well as the location
of spatial data on the globe.
Geometrical regularity is the challenge. Cur-

rently utilized "regular" global grids, such as the
ETOP05 5 minute DEM or the NASA Earth Radia-
tion Budget Experiment (ERBE) 2,50 global model-
ing grid, cannot be extended to the entire Earth
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tetrahedron hexahedron (cube) octahedron dodecahedron icosahedron

Figure 1. The spherical tessellations of the five regular polyhedra.

without losing regularity in both surface area and
shape. Alternative approaches beg investigation.
Subdividing the globe with total regularity of surface
area and polygonal shape within the cells formed by
the subdivision can be achieved only by projecting
the faces of one of the five Platonic polyhedra onto
the globe (Figure 1). Further partitioning of any face
will produce unavoidable variations in surface area,
shape, or both. Area partitioning is closelytied to the
problem of uniformly placing a large number of
points over the surface of a sphere, and optimizing
the placement of points has challenged scientists
working in fields as diverse as viral morphology,
crystallography, and electrostatics (Saffand Kuijlaars
1997).

Equally important is the realization that the
basic geometry of commonly employed quadrilateral
point grids or surface tessellations, while well suited
to array storage and matrix manipulation, may in-
herently hinder numerical and geostatistical model-
ing efforts. Scientists have noted the superior
performance of triangular point grids and associated
hexagonal surface tessellations for numerical analy-
ses central to cellular automata (Wolfram 1986),
percolation theory (Stauffer 1992), and self-avoiding
walks (Slade 1994). Hexagonal tessellations are fa-
vored by influential statisticians involved with devel-
oping survey sample designs and geostatistical
methods such as Kriging (Olea 1984). Additionally,
mathematicians studying spherical point distribu-
tions note that the general geometric pattern for
optimal configurations always is the same: large
numbers of points "appear to arrange themselves
according to a hexagonal pattern that is slightly
perturbed in order to fit on the sphere" (Saff and
Kuijlaars 1997).

It is clear that a thorough evaluation and com-
parison of alternative global grids is needed. In this
article we present an evaluation approach centered
on cell geometry and topology, as well as results
from a global grid comparison study funded by the
U.S. Environmental Protection Agency (White et al
1992; 1998). We begin by developing a
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comprehensive list of grid evaluation criteria, along
with metrics for many of the criteria. We next de-
scribe grid alternatives that are examples of basic
approaches to tessellating the globe. Our compari-
son metrics are next applied to these grids, and the
results of this analysis are presented in both maps
and statistical summaries. We conclude by recom-
mending a particular grid-the Icosahedral Snyder
Equal Area (ISEA)--for global modeling efforts, and
note several topics for further research.

Global Grid Comparison Criteria
Partitioning the globe into a global grid with
prescribed fineness results in area or shape distor-
tion, or both. Different partitioning approaches
will introduce different magnitudes of these dis-
tortions. Therefore, it is necessary to have a set of
ideal geometric/topologic properties and corre-
sponding mathematical metrics for each of the
properties to serve as comparison standards for
alternative global grids. These properties of an
ideal global grid are organized into the list of
general evaluation criteria shown below. An early
version of these criteria was formulated by Mi-
chael Goodchild (1994), and we refer to this list as
the "Goodchild Criteria."
1. Areal cells constitute a complete tiling of the

globe, exhaustively covering the globe without
overlapping.

2. Areal cells have equal areas. This minimizes the
confounding effectsof area variation in analysis,
and provides equal probabilities for sampling
designs.

3. Areal cells have the same topology. Ideally, this
means that every cell has the same number of
edges and vertices.This may not apply to grids
whose cellboundaries are arbitrarycurves.

4. Areal cells are the same shape. Exactlywhat this
means is higWydependent on the nature of the
specific grid. In the ideal case, each cellwould be
a regular sphericalpolygon,with edges consisting

Cartography and Geographic Information Science



D
el

iv
er

ed
 b

y 
P

ub
lis

hi
ng

 T
ec

hn
ol

og
y 

to
: O

re
go

n 
S

ta
te

 U
ni

ve
rs

ity
 IP

: 1
28

.1
93

.1
64

.2
03

 o
n:

 S
at

, 1
2 

N
ov

 2
01

1 
22

:5
0:

45
C

op
yr

ig
ht

 (
c)

 C
ar

to
gr

ap
hy

 a
nd

 G
eo

gr
ap

hi
c 

In
fo

rm
at

io
n 

S
oc

ie
ty

. A
ll 

rig
ht

s 
re

se
rv

ed
.

of great circle arcs of lengths corresponding to
those of every other cell.

5. Areal cells are compact. Because a single vector of
values will be associated with all the points in a
single areal cell, it is preferable that the actual
values of all the points in the cell be as much alike
as possible. Maximal compactness ensures that
the points in a cell are as close to each other as
possible, thus taking advantage of Tobler's first
law of geography, which in this case is that the
closer points are in space, the more likely they are
to be alike.

6. Edges of cells are straight in a projection. Again,
this assumes that the concept of edges has mean-
ing for a particular grid (i.e., that the cell bounda-
ries are not arbitrary curves). This criterion
ensures the existence of a relatively convenient
space for describing, visualizing, and working with
grid cells.

7. The midpoint of the arc connecting two adjacent
cell centers coincides with the midpoint of the
edge between the two cells. This criterion has
proved useful in calculating transport between
cells using finite differences (Heikes and Randall
1995).

8. The points and areal cells of the various resolu-
tion grids which constitute the grid system form a
hierarchy which displays a high degree of regular-
ity. If a hierarchical structure exists, grid cellsmay
be subdivided recursively, and a nested set of
geometrically similar cells may be created from
the set of smallest cells, reducing the burden of
recalculation as the fineness of resolution changes.
A hierarchical structure should also enable activi-
ties such as efficient computer implementation of
the grid system and multi-resolution analysis
using the grid system.

9. A single areal cell contains only one grid reference
point, i.e., each reference point lies in a different
areal cell.

10. Grid reference points are maximally central
within areal cells. In conjunction with the last
criterion, this optimally supports the common
practice of using the point grid as an approxima-
tion to the area grid.

11. Grid reference points are equidistant from their
neighbors.

12. Grid reference points and areal cells display regu-
larities and other properties which allow them to
be addressed in an efficient manner. The grid
system should provide an addressing system that
supports efficient algorithms for such common
grid operations as determining cell and point
neighbors, determining grid distances, and mov-
ing between grid resolutions.

Vol. 26, No.4

13. The grid system has a simple relationship to the
traditional latitude-longitude graticule. Since for
the indefinite future most data will be geo-
referenced using the latitude-longitude graticule,
efficientwaysof transferring data to and from this
system will be required. As in the case of the pla-
nar rectilinear grid, this is a practical considera-
tion that, while perhaps almost arbitrary from a
mathematical viewpoint, cannot be ignored in the
short term.

14. The grid system contains grids of any arbitrarily
defined spatial resolution.
We have already noted that it is mathematically

impossible for any global point grid or surface tessel-
lation to completely fulfill all of these criteria, as
several are mutually exclusive. A good general-
purpose grid or tessellation might be expected to
strike a balance among all the criteria, whereas those
tuned for specific applications or numerical methods
might value certain of these criteria more highly. For
example, geostatistical methods favor equal-area
tessellations that completely cover the globe and
have a hierarchical structure. Survey sampling de-
signs for global environmental monitoring have
equal-area cells as a prime requirement, whereas
atmospheric transport modeling equations rely on
criterion seven. Scientists involved in GIS data inte-
gration and cartographic display, on the other hand,
may value highly the last three criteria.

Evaluation Criteria Metrics
Global grid evaluation criteria are of limited util-
ity unless metrics suitable for grid comparison are
developed for each. Both topological and geomet-
rical metrics must be devised for 1) checking that
a criterion has been met, and 2) determining how
well a criterion has been satisfied. Examples of the
first type of metrics include:
• Criterion I-Ensure that the sum of cell areas

equals the sea level surface area of the globe,
and that the coordinates of all shared cell
edges are identical.

• Criterion 6-Check that the coordinates de-
fining each cell edge are identical to those
computed from the linear equation deter-
mined for the edge endpoints.

• Criterion 9-Employ a point-in-polygon
function to check that only one sampling
point lies in each cell.

• Criterion 8-Check to see that recursive parti-
tioning, a mathematical procedure essential
to create a hierarchical grid system can be
performed.
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Level 3
/'

Level 2

2 x sqrt(1t x cell area)/cell perimeter =

= 3.545 x sqrt (cell area2/r)/cell perimeter (I)

cells with great circle edges (such as spheroi-
dal triangles or hexagons) or of more geomet-
rically complex cells requires the oriented
triangle summation approach found in
Kimerling (1984). These actual areas were
normalized through dividing by the average
area for all cells in the tessellation, so that all
cells in a perfectly equal area global grid
would have normalized cell areas of 1.0.
Criterion 5-Planar compactness is often meas-
ured by the surface-area-to-perimeter ratio
(Muehrcke and Muehrcke 1997). Standardizing
this ratio to 1.0for a planar circleof the samearea
as the cell givesa compactnessindex applicableto
all discrete global grids. This index is computed
from the equation:

(c) 9-fold Triangle Partitions

(a) 4-fold Trtangle Partitions

(d) 9-fok:l Hexagon Partitions

(b) 4-fold Hexagon Partitions

•

Level 1

Figure 2. Four- and 9-fold triangular and hexagonal partitioning of an icosahedron
face at the first three levels of recursion.

The tenninology of recur-
sive partitioning is best under-
stood from an illustration such
as Figure 2. Two types of parti-
tioning, called 4-fold and 9-fold,
are shown in the top and bottom
triangular cells. This involves
checking that each full triangle
(recursion level 0) can be parti-
tioned into either 4 or 9 triangu-
lar cells (recursion level 1). If this
4- or 9-fold partitioning can be
continued to produce subtrian-
gles at all higher levels of recur-
sion, a hierarchical triangular
grid system is achievable.

Recursive partitioning facili-
tates the inverse operation of
subcell aggregation into larger
cells of the same or a different
geometrical form. For example,
the left half of Figure 2 illus-
trates that sets of 4, 9, 16, 25,...
neighboring subtriangles can be
assembled into progressively
coarser spatial resolution trian-
gular global grids. The right half
of this figure showsthat sets of 6,
24, 96, ... neighboring subtrian-
gles can be assembled into pro-
gressively larger hexagonal cells.
Notice that with 9-fold partition-
ing the hexagonal cells are ori-
ented identically, an advantage
when assembling global data sets
at varying spatial resolutions. A
similar illustration could be
created for recursive partitioning of spherically rec-
tangular quadrilaterals, with the desirable rotational
invariance present for any n-fold partitioning.

We have focused on geometrical comparison
of metrics for surface area, compactness, and
point spacing on both the sphere and a spheroid
such as the GRS80 or WGS84. We were aware that
measures on the sphere and spheroid would give
nearly identical numerical results, but using sphe-
roidal area metrics was essential to our demon-
stration that certain grids are truly equal area on
the Earth's surface. All of these measures involve
determination of geodesic distances using stan-
dard ellipsoidal distance equations (Bomford
1971). Examples of comparison metrics include:
• Criterion 2- The spheroidal surface area of

quadrilateral cells can be computed using
standard equations found in Maling (1992).
Computing the spheroidal surface area of

274 Cartography and Geographic Information Science
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Figure 3. Spherical zone used in Zone Standardized Com-
pactness (ZSC) calculation for an icosahedron face.

However, we are dealing with cells on the
globe.Taking the Earth's sphericity into account, a
better index is one that uses a pole-centered spheri-
cal zone of the same area as the grid cell (Figure 3)
for the ideal (1.0 ) compactness. What we term Zone
Standardized Compactness (ZSC)is computed from:

ZSC = sqrt( 4x Tt x cell area - cell area 2 /r2)/cell peTimeter (2)

The derivation of ZSC is given in the Appen-
dix. We have extended this idea to the spheroid
by determining the spheroidal area to parallel
perimeter ratio, normalized to a spheroidal cap of
the same surface area as the cell (Kimerling et al.
1995).
• Criterion 11-Grid point spacing can be meas-

ured, assuming that we can determine the latitude
and longitude of points within adjacent cells.
Assuming the globe to be spherical, we employ
the standard great circle distance equation for
each pair of adjacent coordinates:

distance = r * arccos (sin(lat I) * sin (lat2) + cos (lat J)*
*cos (lat2) * cos (lion I -lon2 I) (3)

• Criterion 10-Detennining grid point centrality
within a cell can be approached as a center of
gra\~ty problem. Here we can use off-the-shelf
algorithms for center-of-gra\~tycomputation from
lists of edge coordinates, and then compare the
grid point location to the center of gra\~ty to
determine the distance and direction of dC\~ation.

Vol. 26, No.4

Each of the above comparison metrics are com-
puted for a single cell or grid point and can be ana-
lyzed statisticallywhen computations are extended to
the entire globe (realizing that the entire population
of cells is the sample). The mean standard deviation
and the range of cell metrics have been found to be
useful comparison statistics for alternative global
grids (Whiteet al. 1998).

Global Grid Alternatives
Numerous surface tessellations have been proposed
as global grids, but the possibilitiescan be organized
into a limited number of general categories. Inspired
by Dutton's (1994) general tessellation taxonomy, we
developed a more specific hierarchical classification
scheme for global grids (Figure 4), and then selected
grids from different classes for comparison. At the
broadest level, our scheme divides grids into those
based on directly tessellating the sphere or spheroid,
and those that transform all or a portion of the globe
to a map projection surfacewhich is tessellated in a
regular manner, with cell edges ancVor grid points
then back-projected to the sphere or spheroid.

At the second level in our classification hierar-
chy, direct surface tessellations can be based on:
• Subdividing quadrilateral cells recursively;
• Subdividing the faces of a spherical Platonic

polyhedron recursively, or
• Creating a Voronoi tessellation comprised of

spherical or spheroidal Thiessen polygons.
Directly tessellated quadrilateral grids can be

further divided into what the global modeling com-
munity calls equal-angle and "constant-area" grids
(Kahn 1995). Tessellations of the globe into quadri-
lateral cells of equal latitudinal and longitudinal
extent are termed equal angle. Examples abound,
including the 5' x 5' £TOP05 global DEM, and the
ERBE 2S x 2.5°, 5°x 5°,and 10°x 10°grids (Brooks
1981). Constant-area tessellations begin with an
arbitrarily sized quadrilateral cell at the equator, and
then define the parallel and meridian cell bounda-
ries across the globe so as to achieve approximately
equal-area cells. This is done either by keeping the
latitude increment constant and adjusting the longi-
tude increment as the pole is approached, or vice
versa (Brooks 1981).

Directly tessellated polyhedral grids can also
be divided into two categories, based on whether
the partitioning of polyhedral faces is performed
with the edges of a great or a small circle. Fekete
and Treinish's (1990) spherical quadtree data
structure, which is based on .recursive subdivision
of spherical triangles obtained by projecting the
faces of an icosahedron onto a sphere, is a good
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Map Projection Surface Tessellations

Single PrOj~ ~tion Surface-- ---- -- --Equal Area Non-Equal Area Equal Area Non-Equal Area

Gnomonic

ex. Fuller (1982)
Icosahedral

ex. Snyder (1992)
Polyhedral Equal
Area Projections

ex. lukatela (1987)
ex. Fekete and ex. Song (1997) Hipparchus Geo-

Treinish (1990) positioning Model
Spherical Quadtree Dutton (1988) QTM

Constant-Area Quadrilateral Tessellation
Our example is the Nimbus Earth Radiation Budget
(ERB) Experiment grid with initial 4S x 4S quad-
rilateral cells at the equator (Figure 6). The longitu-
dinal increment increases in 12 discrete steps to 120°
near each pole. Recursive partitioning into approxi-
mately constant-area subcells is more problematic, as
2-frequency equal-angle partitioning is commonly

Global Grid Comparison Examples

Equal-Angle Quadrilateral Tessellation
Our example will be an initial partitioning of the
globe into thirty-two45° x 45° cells at recursion level
0, and subsequent 9-fold recursive partitioning to
level five.Hence, grids with 45° x 45°, 15°x 15°,5°x
5°, 1 2/3°x 1 2/3°, 5/9°x 5/9°, and 5/27°x 5/27°edges
will be analyzed. Recursion level two, illustrated in
Figure 5, corresponds to the 5°x 5°ERBEgrid.

Our overall comparison of the above categories of
global grids, based on the Goodchild criteria, is
presented in Table 1 and will be discussed as part of
our recommendations. We have also selected four
examples from different categories in our taxonomy
to illustrate our more detailed comparison of surface
area, compactness, and centerpoint spacing varia-
tion. These examples, described below,were selected
to show the fundamental geometrical differences
between quadrilateral and polyhedral grids, as well
as to contrast commonly used "standard" quadrilat-
eral grids with polyhedral alternatives.

ex. Nimbus ERS

Direct SphericaVSpheroidal Tessellations----- I _
Quadrilateral Polyhedral Voronoi---- ---- --Equal Angle "Constant Area" Great Circle Small Circle

Edges Edges

ex. ETOP05
ERSE 2.5 deg.

ex. Tobler and Chen ex. Square Projection
(1986) lambert Cylin- (same as equal angle

drical Equal Area tessellation)

loveland et al (1991)
Global land

Characterization

example of great-circle
edge partitioning.
Song's (1997) small-
circle subdivision system
creates equal-area
spherical triangles with
more mathematically
complex small circle
edges. Dutton's (1988)
QTM projection grid
for octahedron faces is
an interesting combina-
tion of great- and small-
circle subdivision.

Lukatela's (1987)
Hipparchus Geoposition-
ing Model is an excellent
example of a spheroidal
Voronoi tessellation.
Here the outwardly sim-
ple problem is comput- Figure 4. Globalgrid taxonomy.
ing a set of regularly
spaced grid points from
which spherical or sphe-
roidal Thiessen polygons can be constructed. But as
Giacaglia and Lundquist (1972) note: "The problem
of distributing in the most regular way a given num-
ber of points on a sphere has been studied for centu-
ries and, in general, is still unsolved." Methods such
as finding the greatest number of small circles of a
given radius that can be placed on a spherical surface
without overlapping (Coxeter 1962) have been su-
perseded by sampling function approaches for the
sphere that begin with the edges of a spherical poly-
hedron (Giacaglia and Lundquist 1972). Perfect
regularity, however, remains an inherently unachiev-
able ideal.

Map projection based global tessellations
currently can be placed in one of two categories:
single and multiple projection surfaces. Single
projections of the globe, typically cylindrical, have
been used to construct quadrilateral grids. It is
useful, due to the importance of satisfying crite-
rion two, to further divide projection surfaces into
equal area (e.g., Tobler and Chen's (1986) Lam-
bert cylindrical equal-area grid) and non-equal
area (the ETOPO 5 grid, for example, can be
thought of as a square projection partitioned into
cells 5' x 5' in length on the projection surface)
categories. Multiple projection surfaces are typi-
cally faces of Platonic polyhedra. We can also
place these into equal area (e.g., Snyder (1992)
polyhedral equal area projections for the five
Platonic polyhedra) and non-equal area (e.g.,
Fuller (1982) and Baumgardner and Frederickson
(1985» projection of icosahedron faces.
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Equal Angle Grid
Figure 5. Equal-
angle quadrilat-
eral grid for a 45°
longitude by 90°
latitude section
of the globe.

"Constant" Area Grid
Figure 6. Con-
stant area quad-
rilateral grid for a
45° longitude by
90° latitude sec-
tion of the globe.

SNYDER MAP PROJECTION

Figure 7. Icosahedral Snyder Equal Area (ISEA) projection of an icosahedron face (a); Tissot
angular deformation isolines (b).

equivalence throughout (Figure 7). The projection is
made equal area by adjusting the scale outward from
the center of each edge. This results in increased
shape distortion as each of the three axes from the
triangle center to comer vertices is approached. A
map of angular deformation across an icosahedron
face (which is the result of our Tissot distortion
analysis based on the Gaussian basic quantity ap-
proach outlined in Maling (1992» shows this pattern
of distortion.

The equilateral triangular projection of each
icosahedron face is subdivided recursively into equi-
lateral subtriangles in either the 4-fold or the 9-fold
manner illustrated in Figure 2. The bowing of trian-
gle edges along the three axes of angular deforma-
tion is apparent in Figure 8 where 4-fold subdivision

subtriangles of recur-
sion level four are back
projected to the globe.
This edge bowing is a
primary cause of varia-
tions in compactness
among subtriangles.

We noted earlier
that triangular grids
allow hexagonal
grids to be created
through subtriangle
aggregation, and that
hexagonal grids have
several advantages
related to global data
analysis. The ISEA
triangular grid inher-
ently allows equal-
area hexagons to be
assembled at varying

Tissot Angular DeformationIcosahedron Face

employed for simplicity. Breaking from tradition, we
employ 3-frequency equal-angle partitioning to
maintain consistency in our comparisons while using
the same basic partitioning method. The initial 4S
latitude x variable longitude cells correspond ap-
proximately to recursion level two in our equal-angle
tessellation, with partitioning carried to recursion
level 5 (IS, OS, 1.6° latitude by variable longitude
cell edges).

Equal-Area Map Projection Surface Tessellation
Our example is the Icosahedral Snyder Equal- Area
(ISEA) projection (Snyder 1992) which transforms
each icosahedron face on the globe into an equilat-
eral planar triangle while maintaining area

Vol. 26, No.4 277
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PARTITIONING COMPARISONFigure 8. Icosahedron faces that are
4-fold partitioned to recursion level
four on the ISEA and Fuller-Gray
projection surfaces, then re-
projected on an orthographic map
projection to simulate the Earth's
sphericity.

Snyder Projection

4 • FOld SubdiVISion
Recursion Level 4

Fuller-Gray Projection

Figure 9. Aggregation of 54 and 6 neighboring triangles on the ISEA pro-
jection into equal area hexagonal cells forming 9-fold higher resolution
grids.

levels of spatial resolution. For example, aggre-
gating sets of 54 neighboring triangles produces
the equal-area hexagonal grid for the icosahedron
face shown in Figure 9a. Again apparent is the
bowing of hexagon edges along the three axes of
higher angular deformation, which should intro-
duce larger compactness variations.

Aggregating the same subtriangles into sets of
six neighbors (Figure 9b) creates a nine times
higher resolution hexagonal grid with edge bow-
ing more localized along the three axes. Because
nine of the small hexagons (seven full
and one-third of six adjacent) form the
large hexagon, the small hexagons are
a 9-fold subdivision of the large hexa-
gons at the next higher level of recur-
sion. Further 9-fold partitioning of the
underlying subtriangles allows assem-
bly into 9-fold smaller hexagons at
higher levels of recursion.

Non-Equal Area Map Projection Surface
Tessellation
We will use the Fuller-Gray projection
which is based on the geometrical idea
behind R. Buckminster Fuller's icosahe-
dral world map projection (Fuller 1982).
Fuller imagined the three edges of each
icosahedron face as flexible bands curved
to lie on the spherical surface (left half of
Figure 10). Each edge would be subdi-
vided and holes drilled at n equally
spaced increments, and flexible bands
would be strung between corresponding
holes on adjacent edges. This would
create a triangular network of lines on
the sphere, which could be flattened to
create a regular grid of equilateral subtri-
angles (right half of Figure 10).

278

Fuller imagined the verticesof each subtriangle
being the projection of the corresponding line inter-
section point on the sphere. These intersection
points were later found physically impossible to
achieve, because each triplet of intersecting lines on
the globe forms a small triangle in the plane, whose
centerpoint is the best approximation of Fuller's
idea. Gray (1994) developed exact transformation
equations for this approximation, producing a com-
promise projection having both small area and
shape distortion.

(a)

(b)

Cartography and Geographic Information Science
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Figure 10. Fuller's geometrical concept of an icosahedral map projection surface (Source: Fuller
1982).

The equilateral-triangle Fuller-Gray projec-
tion of an icosahedron face is shown in Figure 11,
along with area-scale and angular-deformation
maps displaying results of our Tissot distortion
analysis. Note the smooth increase in area-scale
and angular deformation from the triangle center
to each edge vertex. Both recursive partitioning
and triangle aggregation is performed identically
to the Snyder projection. The only difference
should be the creation of non-equal area triangu-
lar and hexagonal cells that vary less in compact-
ness on average and that grade smoothly from
slightly higher to lower compactness (Figure 8).

Analyses and Results
The ideal comparison of global grid geometrical
properties would consist of computing surface area,
compactness, and other metrics at each level of re-
cursion down to the spatial resolution corresponding
to the smallest grid cell expected to be used in global
analysis. If the smallestcellwere 1 km2, for example,
the 9-fold partitioning of an icosahedron face must
be carried out to recursion level eight, meaning that
area, compactness, centerpoint distance, and other
metries must be computed for over 500 million cells.
Naturally, an infinite number of triangular, hexago-
nal, or quadrilateral recursion levels and cells are
possible, as recursive partitioning can continue
indefinitely.

We have found 9-fold partitioning to recursion
levels less than six to be suitable for comparison
purposes, because surface area, compactness, center-
point spacing, and other metries are still computable
at the rapidly increasing cell densities. However, the
computation effort quickly becomes immense at
higher levels of recursion and the results may not
add significantlyto our understanding of the surface

Vol. 26, No.4

tessellation or grid
point geomeoy.

The normalized
area, zone standard-
ized compactness and
centerpoint distance
analyses that follow
are a representative
sample of our full
research effort. The
four grid alternatives
examined were se-
lected from the lOwe
studied, but results
from only two of the
five recursion levelswe
examined are pre-
sented here to illus-

trate the essential geometrical properties of the full
range of quadrilateral and polyhedral grid alterna-
tives.We have limited the polyhedral analysis to the
hexagonal tessellation, because area and shape dis-
tortion characteristics of triangular partitioning are
presented in a companion article (White et al. 1998).

Normalized Area Map Comparison

• Spheroidal areas were computed from sets of
closely spaced geodetic latitude and longitude
coordinates along each cell edge (usually 11
points along an edge). For the two quadrilat-
eral tessellations the bounding parallels were
on the WGS 84 spheroid. However, for the
Fuller-Gray and Snyder projections only
spherical equations were available, so a more
complex spheroidal transformation proce-
dure had to be used. This involved Projecting
from the authalic sphere for the WGS 84
ellipsoid to the plane using forward projec-
tion equations;

• Partitioning on the planar projection surface;
• Back projecting cell edges and centerpoints to

spherical coordinates using the inverse
spherical equations for each projection; and

• Converting authalic to WGS 84 geodetic lati-
tude using the transformation equations
found in Snyder (1987). This allows the ori-
ented spheroidal triangle summation method
(Kimerling 1984) to be applied to the four
(and other) global grid alternatives.
Maps comparing variations in normalized

surface area for the four discrete global grid ex-
amples described above are presented in Figure
12. The equal-angle and constant-area grids cover
45° of longitude by 90° of latitude (equator to

279
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Fuller-Grey map projection

Icosahedron Face Area Distortion Angular Deformation

Tissot distortion analysis

Figure 11. Fuller-Gray map projection and Tissot distortion analysis for an icosahedron face.

pole), or 1I16th of the globe. Each icosahedron
face, of course, covers 1/20th of the globe, so that
the surface areas of comparison surfaces are ap-
proximately the same. The level of recursion for
each grid was selected so that the average cell area
within each grid is nearly the same. From these
maps in Figure 12, it is apparent that:
• The larger range in normalized area (0.069 -

1.569 or 150 percent) associated with the
equal-angle grid makes it, as expected, by far
the worst alternative of the four;

• The constant-area grid has a greater range of
normalized area than either the Snyder or
Fuller-Gray grids. The pattern of spatial
variation is one of identical normalized area
within east-west bands. Cell areas also de-
crease slowly from south to north within the
three blocks in the bottom half of the map
having identical meridians as cell boundaries.
Such regularity is not present in the rows of
cells forming the top half of the map;

• Normalized hexagon areas on the Fuller-Gray
projection decrease smoothly from a value of
1.06 (6 percent above average) at the icosahe-
dron face center to a lower value of 0.944
near each corner. The very low normalized
area for the triangle at each corner is caused
by this being one of five spherical triangles on
adjacent icosahedron faces that together form
one of 12 pentagonal cells on the globe. Each
pentagon area is 5/6th that of the average
hexagonal cell, which gives the lower normal-
ized area;

280

• Normalized hexagon areas on the Snyder
projection are identical and just slightly larger
than 1.0 so as to offset the three smaller areas
of corner pentagonal cells. If the pentagon
areas are removed from the calculations, all
hexagons are measured as having a 1.0 nor-
malized surface area, a numerical demonstra-
tion that the Snyder equations for the
icosahedron do indeed produce an equal area
map projection surface.
We next examine the spatial pattern of nor-

malized area for hexagons at recursion levels
three and four for the 9-fold partitioning of the
Fuller-Gray and Snyder projection surfaces. The
results are presented in the four orthographic
map projections of icosahedron faces shown in
Figure 13. In each of the three Snyder projection
grids, the normalized areas of hexagonal cells are
identical, but the normalized area value of the
grid rapidly approaches 1.0 as the level of recur-
sion increases. This is due to the progressively
smaller contribution of the pentagonal corner
cells to the total area of the icosahedron face.

At increasing levelsof recursion, the Fuller-
Gray projection grids show a progressive smooth-
ing of normalized area variation as the level of
recursion increases. By the fourth level the
smooth pattern of reduction in normalized area
from the icosahedron center toward each edge
closely mirrors the Tissot area distortion isolines
defining the continuous area distortion surface. As
expected, the spatial pattern of continuous Tissot
area distortion and of discrete normalized cell

Cartography and Geographic Information Science
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Figure 12. Normalized-area comparison for basic segments of four global grids, each
shown on an orthographic map projection to simulate the Earth's sphericity.

1.110

1.569

0.069

0.919
0.8.13
0.77

Figure 16 displays maps of an icosahedron face on
the Fuller-Gray and Snyder projection surfaces that
depict variations in centerpoint distance between
adjacent hexagons for 9-fold hexagonal partitioning
at three levels of recursion (similar research on

Centerpoint Distance Map Comparison

and the other cells be-
coming progressively
more square in shape as
the equator IS
approached;

• The Snyder grid center
hexagon has the lowest
compactness (ignoring
the inherently lower
compactness pentagon
segments at each corner).
The bowed pairs of hexa-
gon edges along each
axis of higher angular
deformation produce
lower compactness hexa-
gons than those farther
away from each axis,
where higher ZSC values
vary only slightly; and

• Except for the lower com-
pactness comer pentagon
cells, ZSCvalues across the
Fuller-Graygrid are consis-
tently higher than the other
three alternatives,with the
highest value at the icosahe-
dron center and a slight,
smooth decrease radially
outward from the center.
As done with normalized

area, the spatial pattern of
ZSC for hexagonal grids
9-fold partitioned to recur-
sion levels three and four was
examined for the Fuller-Gray

and Snyder map projection surfaces (Figure 15).
Both grids show a progressive smoothing of ZSC
values, also seen in the area analysis, with increas-
ing levels of recursion. In both grids the spatial
pattern of slightly lower to higher compactness
closely mirrors the Tissot angular deformation
isoline pattern for the map projection, becoming
spatially indistinguishable by recursion level four.
Hence, Tissot angular deformation can be used to
predict the spatial pattern of compactness
variation.

nyder

Equal Angle

1.110

0.919
0.IIJ3
0.77

Fuller/Gray

"Constant" Area

Compactness Map Comparison

areas become indistinguishable at higher levels of
recursIOn.

Results from computation of Zone Standardized
Compactness (ZSC) for the four grid alternatives
are presented in Figure 14. The portions of the
globe covered and levels of recursion selected for
the area comparisons are used here as well to
insure that the average cell area of each grid is
similar. These four ZSCmaps show that:
• Compactness variation is greatest by far for

the equal-angle grid, as the basic cell shapes
vary from narrow spherical triangles at the
pole to spherical squares at the equator;

• There is relatively little variation in compact-
ness across the constant-area grid, in spite of
the cell at the pole being triangular in shape

Vol. 26, No.4 281
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Figure 13. Normalized-area
comparison for two recursion
levels of the Fuller-Gray and
ISEA grids, each shown on an
orthographic map projection to
simulate the Earth'ssphericity.

9-Fold Recursion Level 3
1.060

fl.

nil r/ ra n der

ld e ur ion Le el 4

Fuller/Gray

1.060

O.9.n
.. J

U.71~

Snyder

quadrilateral centerpoint distance for the equal-
angle and constant-area grids is underway). This
example of our centerpoint distance analysis shows
how variations in great-circle distance between adja-
cent pairs of hexagon centers can be mapped.

The six equilateral triangles fonning each hexa-
gon can be thought of as map symbols shaded ac-
cording to the distance between the hexagon center
and the centerpoint of adjacent hexagons to the
north (0°), northeast (60°), southeast (120°), south
(180°), southwest (240°), and northwest (300°), as-
suming north to be at the top of the page.

At the lowest level of recursion (top-right
map), the general pattern of larger (darker gray)
and smaller (lighter gray) distances relative to the
average (medium gray) centerpoint to centerpoint
distance are aligned with the three axes of higher
angular deformation for the Snyder projection, as
we would expect. The shortest distances are along
each axis and the longest distances are adjacent
and roughly perpendicular to each axis. This
spatial pattern of centerpoint distance variation

282

persists and becomes better defined at the next
two higher levels of recursion. At the highest level
examined here (bottom-right map), the larger
and smaller distances clearly are localized along
each axis, grading toward average values in a
"propeller-like" pattern that corresponds with the
Tissot angular deformation isolines. Indeed, the
Tissot diagram in Figure 7 is an excellent predic-
tor of where variations in centerpoint distance
should occur on the Snyder grid.

The spatial pattern of centerpoint distance varia-
tion for the hexagonally partitioned Fuller-Gray
projection surfaceis not easilydiscerned at the lowest
level of recursion (upper-left map), but becomes
readily visible at the next two higher levels.As with
the Snyder projection, Tissot angular deformation
isolines predict the spatial pattern of little variation
in the center of the icosahedron face, with progres-
sivelylarger centerpoint distance variations (often in
longer-shorter distance adjacent pairs) as each edge
is approached. Overall there appears to be slightly
less centerpoint distancevariation on the Fuller-Gray

Cartography and Geographic Information Science
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Figure 14. Compactness comparison for basic segments of
four global grids, each shown on an orthographic map projec-
tion to simulate the Earth's sphericity.

the icosahedron face always creates 12 penta-
gons on the globe exactly 5/6th the area of each
hexagon, the surface area standard deviation for
the Snyder grid will always be slightly greater
than zero, even though there is no area variation
among the hexagons formed. However, at pro-
gressively higher levels of recursion, the 12
pentagons occupy increasingly less of the total
surface area and the standard deviation for the
entire globe rapidly approaches zero. Hence,
this graph shows the Snyder grid to be clearly
superior for hexagonal subcells less than
100,000 km2 in area.

Variation in centerpoint spacing between adja-
cent cells for the four grid alternatives can be ana-
lyzed by graphing logarithmically the standard
deviation in normalized centerpoint spacing
against average cell area at increasing levels of
recursion (Figure 18). This graph shows the grids
to perform similarly, except for the poorly per-
forming EqualAngleQuadrilateral grid. The Fuller
and Constant Area Quadrilateral grids converge at
higher recursion levels to essentially identical low
standard deviations, closely followed by the Snyder
grid.

Average subcell compactness values for the
four grids (Figure 19) shows the superior perform-
ance of icosahedral models over quadrilateral,
which is to be expected since hexagonal shapes are

.....••.....~.

nyder

Equal Angle

FuUer/Gra

"Constant" Area

9·Fold Recur ion Level 4

FuJler/Gra ~ n der

0.951

U.95.!

0.9-10
U.9IJ
O.ll(.S

9-FoldRecursion Level 3

Fuller/Gray Snyder

Because variation in cell surface area is a
major concern for geostatisticians and
others, we analyzed the variation in
normalized cell area with increasing
levels of recursion. Figure 17 is a loga-
rithmic graph of the standard deviation
in normalized-cell area versus the de-
creasing average-cell area at increasing
levels of recursion for the four discrete
global grid alternatives (but only the
hexagonal grids formed by Snyder and
Fuller-Gray projection subtriangles)
examined graphically above. Recogniz-
ing that the hexagonal partitioning of

Figure 15. Compactness comparison for two
recursion levels of the Fuller-Gray and ISEA
grids, each shown on an orthographic map
projection to simulate the Earth's sphericity.

hexagonal grid, but this can only be shown
conclusivelyby a statistical comparison of
alternativegrids.

Statistical Comparison Results

Vol. 26, NO.4 283
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140km

190km

560 km

1300 kIT

1650 kIT

425 \..m

Snyder
Projection

Recursion
Level 7

Recursion
Level 3

Recursion
Level 5

Fuller-Gray
Projection

Figure 16. Variations in hexagonal centerpoint spacing at three levels of recursion
for the Fuller and ISEA Grids on an icosahedron face.

In addition to the detailed nu-
merical analysis of grid-cell
area, compactness, and center-
point spacing at different levels
of recursion, we carried out an
overall comparison of numerous

Summary Rankings

inherently more compact than
rectangular shapes. At all levels of
recursion the Fuller grid is com-
prised of hexagons slightly more
compact than corresponding
Snyder grid hexagons, both being
far more compact than the corre-
sponding constant area and equal
angle grid quadrilaterals.

Variation in subcell compact-
ness, seen by graphing the stan-
dard deviation of cell compactness
values against average cell area
(Figure 20), shows the slightly
better performance of the Fuller
grid over the Snyder grid at
higher levels of recursion. The
constant-area grid has the lowest
overall standard deviation at its
initial resolution (level 0), but its
standard deviation increases rap-
idly as the initial cells are parti-
tioned in an equal-angle manner.
However, the poor performance
associated with the equal-angle
grid at all levels of recursion is
never approached.

l:
.2 Equal Angle Quadrilateral
1; 0.5 . ! B'> 0- 3
Gl
C Recursion
'C 0.1 Level Constant Area Quadrilateral•..
III 1 0 8

, 3'C ~1 2
l: • 83 ,4 .5
III

1 2 Fuller-Gray Projectionen
III .01
Gl•..
c(

4i
0
'C .001

~
ia 5
E•..
0
Z .0001

10
7

10
6

10
5 4 3 2

10 10 10
2Average Cell Area km (log10 scale)

discrete global grid alternatives, in-
cluding the seven presented in Table
1. Eleven of the fourteen Goodchild
criteria were investigated, along with
two related criteria deemed signifi-
cant for global grid comparison. For
Goodchild criteria 2, 4, and 5, a sum-
mary ordinal ranking from 1 (very
poor) to 10 (best possible) was devel-
oped based on the quantitative analy-
sis of comparison metrics.

Table 1 provides information
crucial to the selection of a global

Figure 17. Normalized subcell area standard
deviation vs. average cell area for four global
grids.

284 Cartography and Geographic Information Science
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Criterion Equal Angle Constant Area Snyder Fuller-Gray Small Circle Dir. Sphere Gnomonic

1. Domain is globe yes yes yes yes yes yes yes

2. Equal areal 1 7 10 8 10 6 3

3. Same topology yes no yes yes yes yes yes

4. Equal shape' 1 3 7 8 7 9 9

5. Compactness· 1 4 7 8 8 8 9

6. Straight edges on
projection n.a.2 n.a. yes yes n.a. n.a . yes

7. Perimeter bisection . J n.i n.i. n.i. n.i. n.i. n.i.n.1.

8. Hierarchy yes yes yes4 yes4 yes4 yes4 yes4

9. Single point yes yes yes yes yes yes yes

10. Maximally centered n.i. n.i n.i. n.i. n.i. n.i. n.i.

11. Equidistant no no no no no no no

12. Addressing n.i. n.i n.i. n.i. o.i. n.i. n.i.
13. LatitudelLongitude yes yes yes yes yes yes yes

14. Arbitrary resolution yes yes yes yes yes yes yes

Geodesic edge lines no no no no no yes yes

Spatial nature of area Continuously Part continu- Constant Continuously Constant Fractal-like Continuously
variation varying ous, part varying varying

irregular

IBest possible = 10; very good = 9; -7 very poor = 1.

2 n.a. = not applicable.

J n.i. = not investigated.

4 Only the triangular cells. not the hexagonal, are hierarchical in these grids.

Table 1. Evaluation of Goodchild's and related comparison criteria for different global grids.

Figure 18. Normalized centerpoint distance standard deviation vs. average cell
area for four global grids.

Conclusions
The global grid evaluation crite-
ria and associated metrics have
allowed us to compare grids
varying widely in cell geometry
and topology. We have observed
that the prime areas of concern
among the small portion of the
global data user community we
have interacted with to date are
equal-area cells and a nested

spherical subdivision, the small circle subdivision
method, and the Fuller-Gray map projection for
the icosahedron. If good overall performance is of
paramount concern, the triangular and/or hex-
agonal partitioning of the Fuller-Gray projection
surface might be selected due to the low variation
in compactness of highly compact cells that vary

slightly in area in a continuously
varying, predictable manner.
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grid based on the relative importance of evalua-
tion criteria from the user's perspective. If cell
compactness is of prime importance, for example,
a triangular or hexagonal grid based on partition-
ing a Gnomonic map projection of an icosahe-
dron face (not discussed in this article) would be
the best alternative, closely followed by direct
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Figure 19. Normalized subcell average compactness VS. average cell area for four
global grids.

Figure 20. Normalized subcell compactness standard deviation vs. average cell
area for four global grids.
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where r is the radius of the sphere and <P is the
latitude of the bounding parallel.

The surface area of a spherical zone is computed
from:

will give a full picture of the strengths and weak-
nesses of current global grid alternatives.
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hierarchy among cells (criteria 2
and 8). Both the quadrilateral
grids and triangular forms of
polyhedral grids examined here
can be partitioned recursively,
allowing a nested hierarchy to
be created. Equal-area cells is
the critical criterion, since cur-
rently employed equal-angle
and constant-area quadrilateral
grids can never be equal area
and were shown to perform
poorly in this respect relative to
several alternative grids.

Only two global grids, those
based on the triangular partition-
ing of the Icosahedral Snyder
Equal Area (ISFA)projection and
partitioning using the Small Cir-
cle Subdivision method (not dis-
cussed in this article but described
in Song 1997)will produce equal-
area cells on the spheroid. The
Small Circle Subdivision method
has the advantage of producing
cells slightly more compact, but
the ISFA grid is currently more
efficient to compute and easier to
implement. Consequently, we
recommend the ISFA as the best
current choice for an equal area
global grid. Whichever global grid
is selected there are implementa-
tion issues that must be addressed
in future research, including:
• Implementing an efficient

addressing scheme for bin-
ning data into grid cells;

• Creating algorithms for fast
translation of gridded data to and from geo-
detic latitude and longitude;

• Developing efficient algorithms for aggrega-
tion and disaggregation among nested grid
levels; and

• Implementing efficient data storage and
access schemes for data in nested cells, includ-
ing metadata storage and access.
We have begun to address several of these im-

plementation facets for the ISFA grid, beginning
with an ETOP05 DEM dataset binning experiment
conducted at several levels of recursion (see
http://bufo.geo.orst.edu/firma/tdgg for binning ex-
amples). Performing similar implementation experi-
ments on additional datasets using other candidate
grids would provide a complementary grid compari-
son that, together with our geometrical comparisons,

286 Cartography and Geographic Information Science



D
el

iv
er

ed
 b

y 
P

ub
lis

hi
ng

 T
ec

hn
ol

og
y 

to
: O

re
go

n 
S

ta
te

 U
ni

ve
rs

ity
 IP

: 1
28

.1
93

.1
64

.2
03

 o
n:

 S
at

, 1
2 

N
ov

 2
01

1 
22

:5
0:

45
C

op
yr

ig
ht

 (
c)

 C
ar

to
gr

ap
hy

 a
nd

 G
eo

gr
ap

hi
c 

In
fo

rm
at

io
n 

S
oc

ie
ty

. A
ll 

rig
ht

s 
re

se
rv

ed
.

REFERENCES

ACKNOWLEDGMENTS

so that

Eidenshink,J.C., andJ.L. Faundeen. 1994. The 1 km AVHRR
global land data set: First stages of implementation. Inierna-
tionaljournal of Remote Sensing 15:3443-62.

Fekete, G., and L. Treinish. 1990. Sphere quadtree: A new
data structure to support the visualization of spherically
distributed data. SPIE: Extracting rManing from complex data:
Processing, display, interaction. Vol. 1259, pp. 242-53.

Fuller, R.B. 1982. SynergeticJ. NewYork: MacMillan.
Giacaglia, G.E.O., and C.A Lundquist. 1972. Sampling func-

tions for geophysics. Smithsonian A5trvphysical Observatory Spe-
cial Report No. 344, 93 pp.

Goodchild, M.F. 1994. Geographical grid models for environ-
mental monitoring and analysis across the globe (panel
session). In: proceddings of GIS/US '94 Conference, Phoenix,
Arizona.

Gray, R.W. 1994. Exact transformation equations for Fuller's
world map. Cartography and Geographic Informatian Systems
21(4): 243-46.

Hastings, D.A 1996. The global land l-km base elevation
digital elevation model: A progress report. Global Change
Newsletter 27: 11-12.

Heikes, R., and D.A. Randall. 1995. Numerical integration of
the shallow-water equations on a twisted icosahedral grid.
Part I: Basic design and results of tests. Monthly Weather
Review 123: 1862-80.

Kahn, R. 1995. What shall we do with the data we are expect-
ing in 1998? In: Proceedings of the Massive Data SelJ Workshop,
Committee on Applied and Theoretical Statistics, National
Academy of Sciences, Washington DC.

Kimerling, A.J. 1984. Area computation from geodetic coordi-
nates on the spheroid. Surveying and Mapping 44(4): 343-51.

Kimerling, A.J., D. White, K. Sahr, and L. Song. 1995. Devel-
opment of global sampling grid. Mid-project report: Sampling
design and statistics research for EMAP Program. u.s. Environ-
mental Protection Agency, Corvallis, Oregon.

Loveland, T.R., J.W. Merchant, D. O. Ohlen, and J.F. Brown.
1991. Development of a land-cover characteristics database
for the conterminous U.S. Photogrammetric Engineering and
Remote Sensing 57(11): 1453-63.

Lukatela, H. 1987. Hipparchus geopositioning model: An
overview. In: Proceedings of Auto Carto 8 Symposium, Balti-
more, Maryland. pp. 87-96.

Maling, D.H. 1992. Coordinate systems and map projectioru (2nd
ed.). Oxford, U.K.: Pergamon Press.

Muehrcke, P.C., and J.O. Muehrcke. 1997. Map we (4th ed.). Madi-
son,Wisconsin:JP Publications.

Olea, RO. 1984. Sanlpling design optimization for spatial functions.
Mathematical Geowgy 16:369-92.

Saff, E.B., and ABJ. Kuijlaars. 1997. Distnbuting many points on a
sphere. The Mathematical Intelligencer 19(1):5-11.

Slade, G. 1994. Self avoiding walks. The MaJhematical Intelligencer
16(1):29-35.

Snyder, J.P. 1987. Map projectioru-A working manual. Wash-
ington, DC: U.S. Government Printing Office.

Snyder, J.P. 1992. An equal-area map projection for polyhe-
dral globes. Cartographica 29(1): 10-21.

Song, L. 1997. Small circle subdivision method for develop-
ment of global sampling grid. Unpublished Masters thesis,
Oregon State University, 176 pp.

Stauffer, D. 1992. Introduction to percolation theory (2nd ed.).
London, U.K.: Taylor & Francis.

Tobler, W.R., and Z. Chen. 1986. A quadtree for global infor-
mation storage. GeographicalAnalysis 18(4): 360-71.

White, D., A. J. Kimerling, and W.S. Overton. 1992. Carto-
graphic and geometric components of a global sampling
design for environmental monitoring. Cartography and Geo-
graphic Information Systems 19:5-22.

White, D., AJ. Kin1erling,K. Sahr, and L Song. 1998. Comparing
area and shape distortion on polyhedral-based recursive partitions
of the sphere. International Journal of Geographiad Information Science
12: 805-27.

Wolfram, S. 1986. Cellular automaton fluids 1: Basic theory.
journal of Statistical Physics 45:471-526. •

(5)Zone perimeter = 2XTCXr(co~)

ZSG = SQ1·t(4XTCxcellarea - cellarea2lr2) I cellperimeter (6)

Zone Standardized Compactness (ZSC) is
given by Zone perimeter/Cell perimeter. Substi-
tuting and combining equations, we compute ZSC
from:

Baumgardner, J.R., and P.O. Frederickson. 1985. Icosahedral
discretization of the two-sphere. S.IA.M. journal of NUrMrical
Analysis 22(6): 1107-15.

Bomford, G. 1971. Geodesy. Oxford: The Clarendon Press.
731 pp.

Brooks, D.R. 1981. Grid systems for Earth radiation budget
experiment applications. NASA Technical Memorandum
83233.40 pp.

Coexeter, H.S.M. 1962. The problem of packing a number of
equal nonoverlapping circles on a sphere. Transactions, New
York Academy of Science, Division of Mathematics, Series II,
vol. 24: 320-31.

Dutton, G. 1988. Geodesic modeling of planetary relief. Car-
tographica 21: 188-207.

Dutton, G. 1994. Geographical grid models for environmental
monitoring and analysis across the globe (panel session). In:
Proceedings of GIS/US '94 Conference, Phoenix, Arizona.

cos$ =sqrt( I.O-(I.O-cellareal(2xTCX r2)) (4)

The perimeter of the spherical zone is the
circumference of the bounding parallel, computed
from:

Gel/area = 2XTCxr2(l.O-sin$) (2)

This research was supported by U.S. Environ-
mental Protection Agency-Oregon State Univer-
sity Cooperative Agreement CR 821672. Matthew
Gregory, Department of Geosciences graduate
student, created the centerpoint distance maps
seen in Figure 16. Dr. Ralph Kahn, NASA-JPL,
also contributed significantly to this manuscript.
This manuscript has been subjected to EPA review
and approved for publication. The conclusions
and opinions are solely those of the authors and
not necessarily the viewsof the Agency.

and

Setting the zone surface area equal to the cell
area, we obtain:

Vol. 26, NO.4 287

http://www.ingentaconnect.com/content/external-references?article=0317-7173()21L.188[aid=1480799]
http://www.ingentaconnect.com/content/external-references?article=0317-7173()21L.188[aid=1480799]
http://www.ingentaconnect.com/content/external-references?article=0317-7173()21L.188[aid=1480799]
http://www.ingentaconnect.com/content/external-references?article=0022-4715()45L.471[aid=138945]
http://www.ingentaconnect.com/content/external-references?article=0022-4715()45L.471[aid=138945]
http://www.ingentaconnect.com/content/external-references?article=0027-0644()123L.1862[aid=8014583]
http://www.ingentaconnect.com/content/external-references?article=0027-0644()123L.1862[aid=8014583]
http://www.ingentaconnect.com/content/external-references?article=0027-0644()123L.1862[aid=8014583]
http://www.ingentaconnect.com/content/external-references?article=0016-7363()18:4L.360[aid=5079926]
http://www.ingentaconnect.com/content/external-references?article=0016-7363()18:4L.360[aid=5079926]
http://www.ingentaconnect.com/content/external-references?article=0317-7173()29:1L.10[aid=5079925]
http://www.ingentaconnect.com/content/external-references?article=0317-7173()29:1L.10[aid=5079925]
http://www.ingentaconnect.com/content/external-references?article=0343-6993()19:1L.5[aid=5079924]
http://www.ingentaconnect.com/content/external-references?article=0343-6993()19:1L.5[aid=5079924]


D
el

iv
er

ed
 b

y 
P

ub
lis

hi
ng

 T
ec

hn
ol

og
y 

to
: O

re
go

n 
S

ta
te

 U
ni

ve
rs

ity
 IP

: 1
28

.1
93

.1
64

.2
03

 o
n:

 S
at

, 1
2 

N
ov

 2
01

1 
22

:5
0:

45
C

op
yr

ig
ht

 (
c)

 C
ar

to
gr

ap
hy

 a
nd

 G
eo

gr
ap

hi
c 

In
fo

rm
at

io
n 

S
oc

ie
ty

. A
ll 

rig
ht

s 
re

se
rv

ed
.

Remote Sensing for the
Earth Sciences (3rd ed.)
Andrew Rencz

Recently adopted titles
in cartography, GIS,
remote sensing
andGPS

Policy Issues in Modern art graph)'
D.R. Frazer Taylor (cd.)

Wilderness Navigation
Bob and Mike Bums

I ••

ACS

Maps with the News
Mark Monmonier

Air Apparent: How
Meteorologists Learned
to Map, Predict, and
Dramatize Weather
Mark Monmonier

fro
ooks

. .

Mapping a Northern Land:
The Survey of Canada
Gerald McGrath and Louis
Sebert (eds.)

Thematic Cartography
and Visualization
Terry A. Slocum

1 it 11 ...•

on Oirle' ~y a
301/49j- ~24)

288 Cartography and Geographic Information Science


